
I Homotopy Theory

A. Homotopy classes of maps

Recall if X
,
Y are topological spaces , then

two maps

f.g : ✗→ Y

are homo topic , denoted f=g, if there is a

continuous map

OI : ✗ ✗ [0,1]→ Y

such that f- (x) = OI (×. 07 and glx)= § (×, 1)

note : I gives a one parameter family of maps
% : ✗→ Y : ✗↳$Cat)

from f- to g ,
call this a homotopy from f tog

example : ✗
any space

f- : ✗→ [0,1 ] is homo topic to the constant

map 91×7--0 , by the homotopy

10+1×7 = C- t) fix)

let CCX
,
Y) = set of continuous maps from ✗ to Y

[ ✗ it ] =
C. IX. Y)/

≈

(where homotopic maps are identified)



example : [ ×, [◦i] ] = { gcxi = o}

we call ✗ a pointed space if it has a base

point xo c-✗

given pointed spaces IX. xD ,
( Y
, yo )

let
[ X, Y]◦ = homotopy classes of

continuous maps f
:✗→ Y

taking Xo to Yo

If f- : ✗→ ×
'

is a continuous map then it

induces

[ ×
'

, y] G. Y]
h : ✗

'
→ Y hof : ✗→ Y

( check this is
and well -defined !)

[ 4.x ] [4.x
']

h : 4→✗ 1-7 f-oh : Y→ ×
'

so [ ×
,
. ] : Top →Set is a covariant functor

[ •
,
×] : Jop →Set is a contravariant functor

f : ✗→ Y is a homotopy inverse of g : Y→✗
if gof = Ktx and fog ≈ idy



if
g
has a homotopy inverse then it is called a

homotopy equivalence and X and Y are

called homotopy equivalent, denote ✗ ≈ Y

examples :
① ✗ = S

'

,
Y= 5

'
✗ [oil ] are homotopy

equivalent

f : ✗→ Y :O #d

g : Y → ✗ :(0,4 0

got :S
'
→ S

'

is eds '

fog 6-is = (go ) and

lot : s
'
✗ [oil] → six [at]

€
,
s ) 1- (0, C- f)s)

is a homotopy %= city to f- fog
② X

,
Y any spaces

f : ✗→ Y a continuous map

the mapping cylinder is

Cf = (✗ ✗ [oil]) UY In
where ⑦• 0) ~ f- (x)



A ✗ ✗ [0. I]

⇒
"

exercises : Cf = Y

indeed
,
show it: Cf→ Y

☒ f) c-✗✗ So,D)→ fix

y EY 1-7 y

is a homotopy equivalence with

homotopy inverse i : Y→ Cf
inclusion

there is an obvious inclusion

j : ✗ → Cf : ✗ Ix;)

exercise : j ≈ 1 of

1

Slogan :
,

any map is an inclusion (up
to homotopy)

a pointed space Hyo ) is an H - space if

there exist continuous maps



µ : Y✗ Y → Y and

V : Y → Y

such that

① µ ◦ 1
,
I cdy and µ ◦ 2

,
≈ idy

where 2
,
: Y→ Y✗ Y :

y
↳ ly , yo)

ii. Y → 4×4 : 41-71yo ,y)

② the compositions

4×(4×4)n→ 4×4-74
and

(4×4)×4 M×idY→Y×Y→Y

are honrotopc i

③ the composition

Y 1dYYxY↳ Y

and

Y v×i>YxY- Y

are homotopic to constant mops

if 6 is a topologicalgroup 6€ a group with
a topology such that product and



inverse are continuous) then

¢
,
e) is an H - space
t
identity element

we will see more examples later but first

-1491 :

the set [✗it]
◦
has a naturalgroup

structure for all pointed spaces ✗
⇔

Y is an H -space

natural means it f- :X→×
'

is continuous

then the induced map

f-
*

:[× '
,
4)
◦
→ [✗it]o

is a homeomorphism
Proof : ⇔ suppose Y is an H- space

given any IX. xD notice that µ : 4×4→ Y

gives a mop
µ* : [ ×, Y ✗ Y]

◦

→ [✗it]
,

there is a map

∅ : [ X, Y]◦ ✗ [×. Y} → [× , Y ✗Y]

Cf] , §]) 1-3 [fxg]



exercise : check 4 is well - defined
and a bijection

so we get
"multiplication "

m = µ ◦ ∅ : [×, Y]◦ ✗ [ ×, Y]◦ → [✗it]◦

denote m( [f]
,§ ]) by [f)

◦ [g]

similarly u gives
V* :[✗it]

◦
→ [ ✗it]

,
and

devote V* (Cf) ) by [ f ]
"

property ① says the constant map
Ctx) = Yo satisfies

[c) • [g) = [g) = (g) • [c)

② shows [f) • ( [g) • [h] ) = ([f) •[g]) .[h]

③ shows [f)
"

a [f) = [c) = [ f)If]
-1

also easy to see f :X
→ ×
'

induces

a homomorphism of groups

⇔) suppose [KYI has a natural group structure -VX



take ✗ = Yx Y

let p , , pz : 4×4→ Y be projection onto 1ˢ ,t2ⁿᵈ factor

[p, ] , [pit c- [ Y ✗Y, Y].
let [µ] = [ p, ]

• [pz ] c- [YXY
,
Y]
.

and µ : 4×4
→ Y be any map ni [µ]

let [V] = [ lily ]
_ '

c- [ Y
,

Y]
.

and u : Y→ Y

any mop in
- [u]

we now check ①

2
,
: Y→ Y ✗ Y : y Cy

, yo )

induces

1.* :[ 4×4, Y]] [ Y, Y]◦
[p, ] 1-7 ( Pioli ]

= [ idy)

(Pz] ↳ [pit, ] = [ const]

naturality gives 2.* ([p, ] . (pi ) = [ idy ] . [const] -_Edy]

(note [ coast] is the identity in [ Y, Y]◦
since let ✗= 1-pt space
f : Y→ ✗ g : ✗→ Y : ✗

◦
→ %

[ ×, 4)
◦
[ 4. Y]

(g)←
↳ [ const ]

only It ! J identity )so identity :c

so it ([µ] ) = Edy] ⇒ moi, = city



similarly for µ ◦ 2
,

≈ city

can similarly check ② and③ ☒÷

If (Y
, yo ) is a pointed space, then the loop space of Y

is
R( 4) = ( (([ on], { ◦ it}), 14 Yo ))

= { f- c- C ( ( on]
,
Y) S.t. fed = Hi ) = Yo }

or equivalently for ✗◦ c- S
'

RLY )= ( ( (5. xD , (4%1)

lemma 2 :

RIY) is an H- space

Proof : define µ : ILY) ✗ ICY) →RCY)

by µ ( f.g) (t ) = {
Azt) ◦ ≤ c-≤ %

9Gt - c) '

iz ≤ c- ≤ 1

and u : ily ) → ICY)

by Ucf) (H = f-( l - t)

exercise : check ①
,
②
,
and③

¥7



given IX.%) , ( Tyo ) their wedge product is

✗ v Y = (✗ ✗ {yo}) u ( {×. } ✗ Y) c ✗ ✗ Y

with base point (xoxo )

example :

✗

0.x.

✗ ✗Y
XVY

⇔¥÷ 0.0
a pointed space ( Y, yo ) is an H

'
-

space if there are

maps µ : Y → YVY and

u : Y → Y

such that
① pye

≈ lily and prettily
where p , ,pz : YVY → Y are

projections onto the 1ˢ atnd 2ⁿᵈ factors

② the compositions

Y -7 Yvy "dYv(YvY)



and

Y→MYvYᵈ"(YvY)uY
are homo topic

③ the compositions

Y -7 YVY→ Y

Y→MYvYb→Y

are homo topic to the constant map

where a on
1ˢᵗ Y is V and is the identity on 2ⁿᵈ

b on "
' ' lily ' ' ' ' V on

2ⁿᵈ

That 3 :

the set [ T, X]
.
has a naturalgroup structure

for all for all pointed spaces IX. ✗↓
⇔

Y is an H
'
-

space

Proof : exercise ☒

given a space X its suspension is

I ✗ = ✗ ✗ [at]/~

where ✗ ✗ to} and ✗ ✗ { i } are

collapsed to district points



0

✗✗["µ \ ⇒ g Ex

it 1k¥ ) is a pointed space then its suspension
is

-2 ✗ =
✗ ✗ [◦

'%✗ ✗ {o}
,
✗ ✗ 117

,
1×1×1" ']}

×l
" '] collapse

this is naturally a
pointed space

examples :

① 5
"
= I 5-

'
=

s
" _ '

✗ {◦%
{5-1×{4,5×14}}

② a little harder

$ ?a) = -21s "! %)

exercise : HM a manifold and
can embedded arc

prove nyc is

homeomorphic to M



lemma 4 :

for any pointed space #%) , its

suspension EY is an H
'

-

space

Proof : define µ : EY → IT v EY by

- → -1¥
note : I Y ✓ I Y = Y ✗¥

{ Y✗ {01,4×111,4×1%1,
{ yo} ✗ [oil] }

so µ is , ist collapse Y ✗ 1423

and set u : EY → I Y

( y,t ) ( y, I- t)

exercise : check ①
,
②

,

and③
☒-



Thm_ 5:

If X is an H
'
-

space and Y is an H -space
then the product structures on [×, Y]◦
agree and are commutative

Proof :

denote the product from H
'
-

space by +
and from H - space by

•

let f-
i.
f
,
be maps representing elts of [×,%

consider
µ

×

✗ rx
" we -1

.

→ ×%y¥Y Tex
← none

01×1--4×3 is diagonal map
PLY, %) = Y= Nyo, y)

we know [ f
,
] • [ fz ] = [ µ; ( f. ✗ Hoo ] and

[f, ] + [ fz] = Golf, vfe) ◦µ, ]

Condition ① of H'- space says 20M, ≈ 0

① of H - space says Mxoj =P

also note



C. %) c- ✗ VX then i IX. xd = # xD c- Xxx

and §, ✗ f-2) ◦ i ( x, ✗D= If# yo )

and f
,

✓ fz (✗ ,a) = (x)
,
Yo)

j off
,
vfz ) = (f, 1×1 , %)

and similarly for (xox) so
center square commutes

so To ( f, v f) ° Mr ≈ Mxoj ◦ ( f. ✓tz ◦My

= µ✗ ◦* ✗f) ◦ I ◦Mr

≈ Mx ☐ ¢
,
✗ f) o ☐

i. product structures same !

to see the product structure is commutative
we use

Fact : if p : 6×6 → 6 :(g. 4) i→gh is
>

a homomorphism, then 6 is commutative

indeed :

PIG, 4715! 4-
'D= pfgg -1, hh

-1)=p/e. e) =e
I I

plgih) plgih
") = ghg

_' h
-'

so gh = hog



now µ× : 4×4 → Y induces a homomorphism

[ ×, YXY] [✗it]
◦

we also have the bijection

to :[ ✗it]
◦
✗ [✗it]

◦

→ [X
,
Y ✗ Y]

◦

(Cf]
,
[g) ) [ fxg ]

is a homomorphism since ✗ is an H
'
-

space

to see this let pi : YxY→Y be projection

to the 7ᵗʰ factor

this induces a homomorphism

(pi) * :[ ×,YxY]
◦

→ [×
,
Y]
.

and ¢ is clearly the inverse of (A)* ✗ (e)*
so (A)* ✗ (pi * is an isomorphism with

in
'

verse ¢

•

°

. µ* ◦ ∅ :[✗it]
◦
✗ [×

,
Y]
◦

→ [×,Y]◦
(Lf ]

,
[g)) 1-3 [f) . [g]

is a homomorphism and hence

[ ✗it} is abelian from above fact
☒



lemma 6 :

If Y is locally compact and Hausdorff there is a

bijection [ ( ✗ ✗Y
,
Z) → (

◦

(X
,
C
◦

CY
, ED

①

g :X ✗Y→ 2- l→ 4 : ✗→ CYY
.

Z)

✗↳ gcx;) : Y→Z

¢ :X-14-7 2- f : ✗→ CYY
,
Z)

C.4) f-4)Cy)

it ✗ is also Hausdorff this is a homeomorphism

a space is locally compact if every point has a nbhd U
that is contained in a compact set.

Remark : lemma implies [ ✗✗ Y, -2 ] = [ ×, CIT, Z )]

Proof : to prove this lemma we need a topology
on [

°

(X
,
Y)

we use the compact open topology
given C a compact set in X and

W an open set
in Y

set UK
,
W) = {f c- CTX, Y) : f-(c) CW}

this forms a sub basis for a topology on (
°

(KY)

called the compact open topology



exercise :

1) if Y is a metric space, show this is the
"

topology of compact convergence
"

ze
. fu → f iff tf compact CCX, fu / ftc

uniformly

2) If f : ✗ ✗ Y → Z is continuous
,
then

so is F: ✗→ [(Y
,
Z) : ✗ fx : Y→z

y→ f-(×, y)
also continuous

3) the converse is true if Y is locally
compact and Hausdorff

4) prove the theorem ☒-

the smash product of two pointed spaces X, Y is

✗ rY =
✗%, y

=
✗ ✗YI

✗✗ {Yo } u {xD✗ Y

note the reduced suspension is

[ ✗ = S
'
^✗ =

"✗
%-)✗ ✗ u 5×1×0}

☐ n- •
5✗✗/

1pm



Corollary 7 :
If Y is locally compact and Hausdorff

[ ✗ ^ Y
,
Z]

◦

= [ ×
, EasedYZ )]

Proof : if f- c- (
°

based
(✗I chased (42-1)

then f-(Xo ) = constant
mop T→Z

: y→ 2-
◦

so the mop F
:X ✗ Y→ Z : ⇐y)→ fancy)

sends ✗ Y→ 2-
◦

also f-(x) : Y→ Z thot sends yo to Zo

so F ( Xx {yo }) = { to }

and F induces a map in
[✗ ^Y

,
Z]
,

you can similarly construct the inverse

mop
☒-

recall : the loop space is RCX) =
(
°

based ( s! X)

Corollary 8 :

[ EX
,
Y ]
◦

= [X.nl YI]
.

"

suspension is the adjoint of looping
"



Proof :

⇐ ✗it]
◦

= [ Sh X
,
Y]
◦

= [ ×
, 4.seals :X]

.

= [ ✗ , 544) ]
◦ ☒-

the nth homotopy group of a based space (kid is

Tin (X) = [ s ? ✗ ]
.

note : 1) Tin (X) = [ 5, ✗ To = [ IS
" _

! ×]
◦

= [ 5-1
,
Rex) ]

.

=
.
. .

= [ s
'

,
re

- '

Cx) ] = IT
,
IN

_ '

(x))

so TWX) = IT(si
_ '

( x))

and Tin 1×1 = % (IAD)

recall TECH = # path components

so Tn (X) = # of path components of Iad

2) Tin (X) = [ SY r( xD
.

n ≥ 2
,
SLCX) an H - space an S

" "

an

H
'
- space so Thʰ 5 give's

talk is abelian for n ≥ 2



3) if ✗ is a Lie group , then it is an H
-

space

so IT
,
IX) is abelian

How does [✗it]
◦ depend on the base points ?

given fo , f, :X→ Y and

U : [oil ] → Y

if there is a homotopy F : ✗✗ [◦i]→ Y s.t.
FIX

,
ol = fix)

Fix
, 1) = f. (x)

F (✗
◦f) = u (f)

then we say f. and
f
, are

homo topic along u

and denote this f. ≈af,

if f-
◦
and f

, preserve base points then

u is a loop in Y

to have nice properties when we move the base

point, we need (X, xD to be
"

non -degenerate
"

by which we mean they are an NDR -pair
↑
NeighborhoodACX is an NDR - pair it there Deformation
Retract

are maps



u : ✗→ [on]

h : ✗ ✗ [on] → ✗

such that
1) A = a-

'

lol

2) h( • , D= I'd✗ C.)

3) hla.tl = a tf C-c- [oil]
,

a c-A

4) hlxi ) c-A H ✗ c- ✗ with and < 1

(so the nbhd 6- ' ([ 0,1 )) of A deformation retracts

to A)

exercise :

1) if A is a sub - CW complexof ✗ then
IX. A) is an NDR - pair

2) it A is a submanifold of ✗ then

(X
,
A) is an NDR -pair

in particular A-- pt in 5 is an NDR-pair
lemma 9 :

If IX. A) is an NDR -pair, then

(✗ ✗ lol) u CA ✗ [◦i] ) is a

retract of ✗ ✗ [oil]



Proof : set
R : ✗ ✗ [◦ , ,]→☒ ✗ {03)u(A ✗ ["D)

to be
*t) ✗ c-A or C- = 0

R(✗it) = {(hlxn) , t- uix) t≥ next and c- > 0

(h IX.¥,) , 0) UCH ≥ c- and UCH > ◦

UH)=tE-
exercise : check this is a retract

,☒

lemma 10 :
If IX. %) an NDR -pain and

f-
◦
: ✗→ Y with folk)= Yo

8 :[on] → Y a path yo toy ,
then ] an f. : ✗→ Y such that

f. (Xo ) - y, and f.=, f,

denote f
, by 8. f. (well-defined once R fixed)



Proof : let R be as defined in the last proof
for (X

, Xo ) so R is a retract

R : ✗ ✗G. ☐→ ☒ ✗ {◦3)UM} ✗[◦ . D)

now let H :X ✗[0.1]→ Y be

H (×,t )= [◦ (RCH) it Rex
,
E) c- ✗ ✗ {o}

TIR HAD it RH.tl c- {%}✗ [on]

let f. (x)= HCX, 1)

Clearly H is a homotopy along 8 between fo and f. ☒-
lemma 11 :

suppose fo , f, .fr : ✗→ Y are based maps, and (Xx) is

an NDR -pair.

If to ≈ r f, and f-
◦ =p / fz with 8=8

'

rel boundary
then f, I fz rel base point

Idea of Proof : IX. xD an NDR -pair then you can

show ( ✗✗ {on]
, (✗ ✗ { 0,13) u ( {xD ✗ [onD) is an

NDR - pair so there is a retraction

R : ✗✗ G. is ✗ [on]→KxMuux) ✗ [on]



let It be the homotopy to -rf,
6 " " f. ~jfj

,

and

K n ' l 8 ~ 8
'

nd endpts

how

'

i.
'¥

É
°

0 t '

on each ✗ ✗ {+3×10}

put to
call the composition above I

Ñ /
✗ ✗ [on] ✗ { i}

is the homotopy f, n f,
rel base pt EEA

lemma 12 :

suppose to :X-74 and f. :✗→ Y are homotopic along 8,
fz : ✗→ Y is homo topic to f, along 82 and

8,117=814
,
then f-

◦ ~q*r~fu

Proof : just concatenate the homotopies



fz

← 6 (44--1) for 6 homotopy fine! fi

← HCX.lt) for H homotopy first,
"

f-
◦

✗o
EH

Thm_ 13 :

If Xo is a nondegenerate base point of ✗ then

Tf ( 4. yo ) acts on [ X ,
Y]
◦

moreover
,
[ X
,
Y] is the quotient set of [✗Y]◦

by the t, (4×0) action if Yi 's

path connected

Proof : [HE TICY.
%) and (f) c- [ X, Y]

.

by lemma 10 we have 8.f : ✗→ Y

and [V. f) clearly in [ ✗it].

Clavin : [Tf] is well-defined.

Suppose f.g c- [ f] so f=g rel base pt

by lemma 10 F f, ,g,
such that

f =p -1, and 9%9 ,



thus f, I g-if =p 9 ≈ v9 ,
rel base point

by lemma 12 fi F- '* const *8 9 '

and lemma 11 says f. ≈ g, rel base
boint

so [8.f) = [ 8g ] and Kit] does not depend
on f- c- [ f]

and [8't] does not depend on 8 c- [8] by lem

let I :[KY]
◦

→ [X
,
Y] be the map that forgets basept.

clearly ICED .[f]) = Ikr))

so € is invariant under it, / Y, -co ) action

i. Io defines a map
[✗ Y¥,,, ,

→ [×
.
Y]

it ICHI = F- ([g ]) , then

let H be the free homotopy f tog
and Ntl = Hlx. ,t)

f
, g both take Xo to yo so 8 c- FLY

, Yo)

and (8) • [f) = [g]

so $ is injective on [✗it ] 14yd
F- is clearly onto by lemma lo if
Y is path connected ☒



Corollary 14 :

a based map is null
-homo topic

⇔

it is based null- homo topic

Proof : clearly based null - homotopic ⇒ null-hometopic

now it f- ≈ c (the constantmap, can assume 4-4=-6) by homotopy H

let ✗(t) = It(Xo, t) and we see f- =gC

50 ( I
g-
if

of course C-
g-i
C

so f- ≈ C vet base point by lemma 11
4¥

Corollary 15 :

it Y is simply connected then

[ ×, Y] .→ IX. Y]

is a bijection

note : a special case of Th " 13 says
IT
,
CY
,
%) acts on Tn ( Y, yo)

with quotient [5. Y]

( it Y is connected)


