I Homotopy Theory

A. Homotopy classes of maps

Recall if X, Y are topological spaces, then two maps $f_{1}g: X \rightarrow Y$ are homotopic, denoted f=g, if there is a continuous map $\overline{\Phi}: X \times [o, 1] \longrightarrow Y$ Such that $f(x) = \Phi(x, 0)$ and $g(x) = \Phi(x, 1)$ note: I gives a one parameter family of maps $\phi_{L}: X \longrightarrow Y: x \longmapsto \mathbb{P}(a, t)$ from f to g, call this a homotopy from f to g example: X any space f: X -> [0,1] is homotopic to the constant map g(x)=0, by the homotopy $\phi_{f}(x) = (t - t) f(x)$ let C(X,Y) = set of continuous maps from X to Y $[X,Y] = C(X,Y)/_{\sim}$ (where homotopic maps are identified)

Promple: [X, [0,1]] = {g(x) = 0}
we call X a pointed space if it has a base
point x₀ eX
given pointed spaces (X, x₀), (Y, y₀)
let
[X, Y]₀ = homotopy classes of
Contribuous maps
$$f: X \rightarrow Y$$

tahing x₀ to y₀
If $f: X \rightarrow X'$ is a contribuous map then it
induces
[X', Y] $\xrightarrow{f^*}$ [X, Y]
h: X' → Y → hof: X → Y
and
[Y, X] $\xrightarrow{f_*}$ [Y, X']
h: Y → X → foh: Y → X'
So
[X, ·]: Jop → Let is a controvariant functor
[·, X]: Jop → Let is a controvariant functor
[·, X]: Jop → Let is a controvariant functor
f: X → Y is a homotopy inverse of g: Y → X
if gof = id_X and fog = id_Y

if ghas a homotopy inverse then it is called a homotopy equivalence and X and Y are called homotopy equivalent, denote X=Y <u>examples</u>: () X = 5', Y = 5'× [0,1] are homotopy equivalent $f: X \to Y: \to \mapsto (\phi, o)$ $g: \mathcal{C} \to \mathcal{X} : (\theta, \ell) \mapsto \Phi$ $gof: 5' \rightarrow 5'$ is (d_5') $f_{og}(\Phi_{i,5}) = (\Phi_{j,0})$ and $\phi_{\ell}: S' \times [o, i] \longrightarrow S' \times [o, i]$ $(\Theta, S) \longmapsto (\Theta, (I-f)S)$ is a homotopy \$= idy to \$= fog 2 X, Y any spaces f: X-> Y a continuous map the mapping cylinder is $C_f = (X \times E_0, I]) \cup Y /_{N}$ where (x, 0) ~ f(x)

 $X \times \{o, i\}$

<u>exencise</u>: C_f = Y indeed, show $\pi: C_f \longrightarrow Y$ (r,+) exx 6,1) > frx y € Y → y is a homotopy equivalence with homotopy inverse i: 2 -> Cf inclusion there is an obvious inclusion $j: X \longrightarrow C_{f} : X \longmapsto (X, i)$ exencise:) = 10f

<u>Slogan</u>: any map is an inclusion (up to homotopy)

a pointed space (Y, Yo) is an <u>H-space</u> if

there exist continuous maps

$$\mu: Y \to Y \quad and$$
$$\nu: Y \to Y$$

such that 1 Mol, = idy and Molz = idy where 1,: Y -> Y × Y : y +> (y, xo) $1_2: \Upsilon \rightarrow \Upsilon \times \Upsilon : \Upsilon \longrightarrow (\gamma_0, \Upsilon)$ 2) the compositions $Y \xrightarrow{(Y \times Y)} \xrightarrow{id_Y \times \mu} Y \xrightarrow{(Y \times Y)} Y$ and (YxY)XY MXidy YXY MY are homotopic (3) the composition Y Idy XV YXY M Y and y <u>vxidy</u> jxy # are homotopic to constant mops if G is a topological group (re a group with

a topology such that product and

inverse are continuous) then (G, e) is an H-space identity element

We will see more examples later but first

76-1: the set [X,Y], has a natural group structure for all pointed spaces X Y is an H-space

natural means if f:X-X' is continuous then the induced map $f^*: [x', \gamma] \longrightarrow [x, \gamma]_{o}$ is a homeomorphism

 $\frac{Proof}{(K)} : (K) \quad \text{Suppose } Y \text{ is an } H \text{-space}$ $given any (X, x_0) \quad \text{notice } Hat \quad \mu: Y \times Y \rightarrow Y$ $gives a \quad mop$ $\mu_{X} : [X, Y \times Y]_{0} \rightarrow [X, Y]_{0}$

there is a map $\phi: [X,Y]_{o} \times [X,Y]_{o} \longrightarrow [X,Y*Y]$ ([f], [g]) → [f×g]

evencie: check & is well-defined and a bijection so we get "multiplication" $M = \mu \circ \phi : [X, Y]_{O} \times [X, Y]_{O} \longrightarrow [X, Y]_{O}$ denote m([f],[g]) by [f].[g] similarly v gives $\mathcal{V}_{*}: [X, Y]_{o} \rightarrow [X, Y]_{o}$ and denote $\mathcal{V}_{*}([f])$ by $[f]^{-1}$ property () says the constant maps $C(x) = Y_0$ satisfies $[c] \cdot [g] = [g] = [g] \cdot [c]$ 2 shows [f]. ([g]. [h]) = ([f]. [g]). [h] (3) shows $[f]^{-1} \cdot [f] = [c] = [f] \cdot [f]^{-1}$ also easy to see f: X -> X' induces a homomorphism of groups

(⇒) Suppose [X,Y], has a natural group structure ∀X

take
$$X = Y \times Y$$

let $P_{11}P_{2}: Y \times Y \rightarrow Y$ be projection onto $1^{\text{st}}, 2^{\text{eff}}$ floctor
 $[P_{1}], [P_{2}] \in [Y \times Y, Y]_{0}$
let $[\mu] = [P_{1}] \cdot [P_{2}] \in [Y \times Y, Y]_{0}$
and $\mu: Y \times Y \rightarrow Y$ be any map in $[\mu]$
let $[V] = [Id_{Y}]^{-1} \in [Y, Y]_{0}$ and $\nu: Y \rightarrow Y$
any map in $[\nu]$
we now check (D
 $l_{1}: Y \rightarrow Y \times Y: Y \mapsto (Y, Y_{0})$
induces
 $l_{1}^{*}: [Y \times Y, Y]_{0} \rightarrow [Y, Y]_{0}$
 $[P_{2}] \mapsto [P_{0} \cdot i] = [Id_{Y}]$
 $[P_{2}] \mapsto [P_{0} \cdot i] = [Id_{Y}]$
 $(note [const] is the identity in $[Y, Y]_{0}$
 $since let X = I - pt space
 $f: Y \rightarrow X$ $g: X \rightarrow Y: x_{0} \rightarrow y_{0}$
 $[P_{2}] \leftarrow [Const]$
 $conty ell'_{0}$
 $So l_{1}^{*}([P_{0}]) = [Id_{Y}] \Rightarrow [P_{0}]_{1} = id_{Y}$$$

similarly for
$$\mu \circ \tau_{2} = idy$$

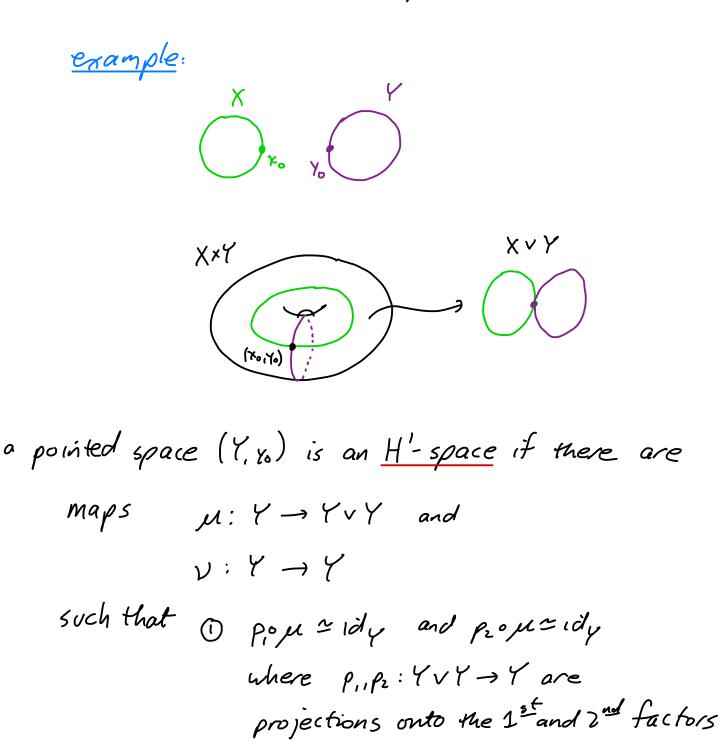
can similarly check (2) and (3) #
If (Y, γ_{0}) is a pointed space, then the loop space of Y
is $\mathcal{L}(Y) = C(([\circ, 1], \{\circ, 1\}), [Y, \gamma_{0}))$
 $= \{f \in C([\circ, 1], Y) \ s, t, f(o) = f(1) = \gamma_{0} \}$
or equivalently for $\pi_{0} \in S^{1}$
 $\mathcal{L}(Y) = C(((S', \pi_{0}), (Y, \gamma_{0})))$

lemma 2: SL(Y) is an H-space

Proof: define $\mu: \mathfrak{L}(Y) \times \mathfrak{L}(Y) \to \mathfrak{L}(Y)$ by $\mu(f,g)(t) = \begin{cases} f(2t) & 0 \leq t \leq Y_2 \\ g(2t-i) & Y_2 \leq t \leq 1 \end{cases}$ and $\chi: \mathfrak{L}(Y) \to \mathfrak{L}(Y)$ by $\mathcal{V}(f)(t) = f(i-t)$ <u>exercise</u>: Check $(\mathbb{D}, \mathbb{Z}), and (\mathbb{G})$

given
$$(X, x_0), (Y, Y_0)$$
 their wedge product is

$$X \lor Y = (X \times \{Y_0\}) \cup (\{x_0\} \times Y) \subset X \times Y$$
with base point (X_0, Y_0)



2 the compositions Y MY YVY MYV(YVY)

Proof: exercise

given a space X its suspension is $\Sigma X = X \times [0,1]/_{n}$ where $X \times \{0\}$ and $X \times \{1\}$ are collapsed to distanct points

$$x \times [0,1] \longrightarrow x \times [0,1] \longrightarrow z \times x$$

$$if (X, Y_0) \text{ is a pointed space then its suspension}$$

$$is \quad \sum X = X \times [0,1] / \{X \times \{0\}, X \times \{1\}, \{x_0\} \times [0,1]\}$$

$$if (X, Y_0) \times [0,1] \quad collapse$$

$$th is is naturally a pointed space$$

$$examples:$$

$$(1) \quad 5^n = \sum s^{n-1} = \frac{s^{n-1} \times [0,1]}{\{s^{n-1} \times [0], s^{n-1} \times [0]\}}$$

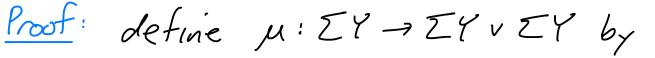
$$(2) \quad a \quad little harder$$

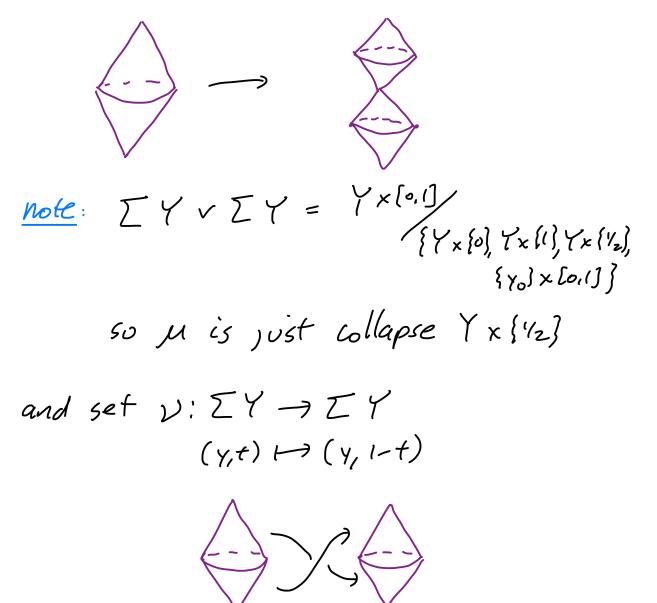
$$(s^{n}, x_0) = \sum (s^{n-1}, x_0)$$

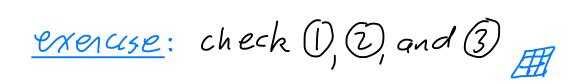
$$exercise: \quad If M a manifold and c an embedded arc prove M_C is homeomorphic to M$$

lemma 4:

for any pointed space (Y, Yo), its suspension EY is an H'-space







If X is an H'-space and Y is an H-space then the product structures on [X,Y], agree and are commutative

<u>Proof</u>:

denote the product from H'-space by + and from H-space by .

let fi, for be maps representing elts of [X, Y], Consider $\mathcal{M}_{v} \times \mathcal{X} \times \mathcal{X} \xrightarrow{f_{i} \vee f_{z}} \mathcal{Y} \vee \mathcal{Y} \xrightarrow{\mathcal{Y}} \xrightarrow{\mathcal{Y}} \mathcal{Y} \xrightarrow{\mathcal{Y}} \xrightarrow{\mathcal{Y}} \mathcal{Y} \xrightarrow{\mathcal{Y}} \xrightarrow{$

∆(x) = (x,x) is diagonal map $\nabla(Y_1,Y_2) = Y = \nabla(Y_{01},Y)$

We know $[f_i] \cdot [f_2] = [\mu_x^\circ (f_i \times f_2) \circ \Delta]$ and $[f_i] + [f_2] = [\nabla \circ (f_i \vee f_2) \circ \mu_v]$ Condition (1) of H'-space says $2 \circ \mu_v \simeq \Delta$ (1) of H-space says $\mu_x \circ j \simeq \nabla$

also note

$$(x, x_{0}) \in X \vee X \quad \text{then} \quad i(x, x_{0}) = (x_{1}x_{0}) \in X \times X$$

and $(f_{1} \times f_{2}) \circ i(x_{1}x_{0}) = (f_{1}(x_{1}, y_{0}))$
and $f_{1} \vee f_{2}(x_{1}, x_{0}) = (f_{1}(x_{1}, y_{0}))$
and similarly for (x_{0}, x) so
center square commutes
 $f_{0} = f_{0} \circ (f_{1} \vee f_{2}) \circ f_{0} = f_{0} \circ (f_{1} \vee f_{2}) \circ f_{0} = f_{0} \times f_{0} \circ (f_{1} \vee f_{2}) \circ f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} \times f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} \times f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ i \circ f_{0} \times f_{0} = f_{0} \times f_{0} \circ (f_{1} \times f_{1}) \circ f_{0} \circ f_{0} = f_{0} \times f_{0} \times f_{0} = f_{0} \times f_{0} \times f_{0} \times f_{0} \times f_{0} = f_{0} \times f_{0} \times f_{0} \times f_{0} \times f_{0} = f_{0} \times f_{0} \times f_{0} \times f_{0} \times f_{0} = f_{0} \times f$

now Mx: YXY -> Y induces a homomorphism $\begin{bmatrix} X, Y \times Y \end{bmatrix} \xrightarrow{\mu_*} \begin{bmatrix} X, Y \end{bmatrix}$ we also have the bijection $\phi: [X,Y] \times [X,Y] \longrightarrow [X,Y \times Y]$ ([f], [g]) I→ Lf×g] is a homomorphism since X is an H'-space to see this let pi: YXY -> Y be projection to the 1th factor this induces a honomorphism $(P_{1})_{*}: [X, Y \times Y] \to [X, Y]_{o}$ and \$ is clearly the inverse of (p,)* * (p2)* so (p1)* * (p2)* is an isomorphism with inverse \$ $\therefore \mu_* \circ \phi : [X, Y]_{\circ} \times [X, Y]_{\circ} \longrightarrow [X, Y]_{\circ}$ $([f], [g]) \longmapsto [f] \cdot [g]$ is a homomorphism and hence [X,Y], is abelian from above fact

a space is <u>locally compact</u> if every point has a nord U that is contained in a compact set. <u>Remark</u>: lemma implies $[X \times Y, Z] = [X, C^{o}(Y, Z)]$ <u>Proof</u>: to prove this lemma we need a topology on $C^{o}(X,Y)$ We use the compact open topology given C a compact set in X and W an open set in Y

set $U(C,W) = \{f \in C^{(X,Y)} : f(c) \subset W\}$

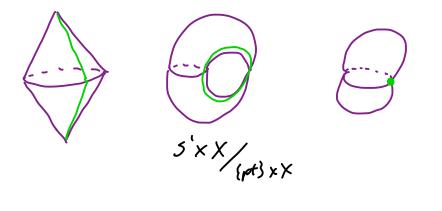
this forms a subbasis for a topology on (°(XY) called the compact open topology

the smash product of two pointed spaces X, Y is

$$X \wedge Y = \frac{X \times Y}{X \vee Y} = \frac{X \times Y}{X \times \{Y_0\} \cup \{X_0\} \times Y}$$

note the reduced suspension is

$$\sum X = \frac{5' \times X}{(pr) \times X \cup 5' \times (r_0)}$$



Lorollary 7:

If Y is locally compact and Hausdorff $[X \land Y, Z] = [X, C_{based}^{\circ}(Y, Z)]_{o}$

Proof: if $f \in \binom{\circ}{based} (X, C_{based}^{\circ} (Y, Z))$ then $f(x_{\circ}) = constant map Y \rightarrow Z: Y \mapsto Z_{\circ}$ so the map $F: X \times Y \rightarrow Z: (x, y) \rightarrow f(x)(y)$ sends $\{x_{\circ}\} \times Y \mapsto Z_{\circ}$ also $f(x): Y \rightarrow Z$ that sends Y_{\circ} to Z_{\circ} so $F(X \times \{Y_{\circ}\}) = \{Z_{\circ}\}$ and F induces a map in $[X \wedge Y, Z]_{\circ}$ you can similarly construct the inverse map

the loop space is $SL(X) = C_{based}(S', X)$ recall:

Corollary 8 $[\Sigma X, Y]_{o} = [X, \Omega(Y)]_{o}$

"suspension is the cadjoint of looping"

$$\frac{Proof}{\left[\Sigma_{k},Y\right]_{o}} = \left[S_{n}X,Y\right]_{o} = \left[X,C_{based}^{o}\left(S_{i}'Y\right)\right]_{o}$$
$$= \left[X,\mathcal{SL}(Y)\right]_{o}$$

the nth homotopy group of a based space (X,r_o) is

$$T_{n}(X) = [S^{n}, X]_{o}$$
note: 1)
$$T_{n}(X) = [S^{n}, X]_{o} = [ZS^{n-1}, X]_{o}$$

$$= [S^{n-1}, \Omega(X)]_{o}$$

$$= \dots = [S', \Omega^{n-1}(X)] = T_{n}(\Omega^{n-1}(X))$$
so
$$T_{n}(X) = T_{n}(\Omega^{n-1}(X))$$
necall
$$T_{0}(Y) = \# \text{ path components}$$
so
$$T_{n}(X) = \# \text{ of path components of } \Omega^{n}(X)$$
i)
$$T_{n}(X) = [S^{n-1}, \Omega(X)]_{o}$$

$$n \ge 2, \Omega(X) \text{ an } H \text{-space an } S^{n-1} \text{ an}$$

$$H^{-} \text{ space so } Th^{m} 5 \text{ gives}$$

$$T_{n}(X) = x \text{ obscieves of } X = 2$$

$$u: X \to [o, i]$$
$$h: X \times [o, i] \to X$$

Such that 1) $A = u^{-1}(0)$ 2) $h(\cdot, 0) = id_X(\cdot)$ 3) $h(a,t) = a \quad \forall \ t \in [0,1], \ a \in A$ 4) $h(x,1) \in A \quad \forall \ x \in X \ with \ u(x) < 1$

(so the nbhd $u^{-1}([0,1))$ of A deformation retracts to A)

Proof: set

$$R: X \times [o,1] \longrightarrow (X \times \{o\}) \cup (A \times [o,1])$$
to be

$$R(x,t) = \begin{pmatrix} (x,t) & x \in A \text{ or } t = 0 \\ (h(x,1),t-u(x)) & t \ge u(x) \text{ and } t \ge 0 \\ (h(x,\frac{t}{u(x)}), 0) & u(x) \ge t \text{ and } u(x) > 0 \end{pmatrix}$$

$$u(x) \ge t$$

$$u(x) = t$$

$$A$$
exercise: check this is a retract

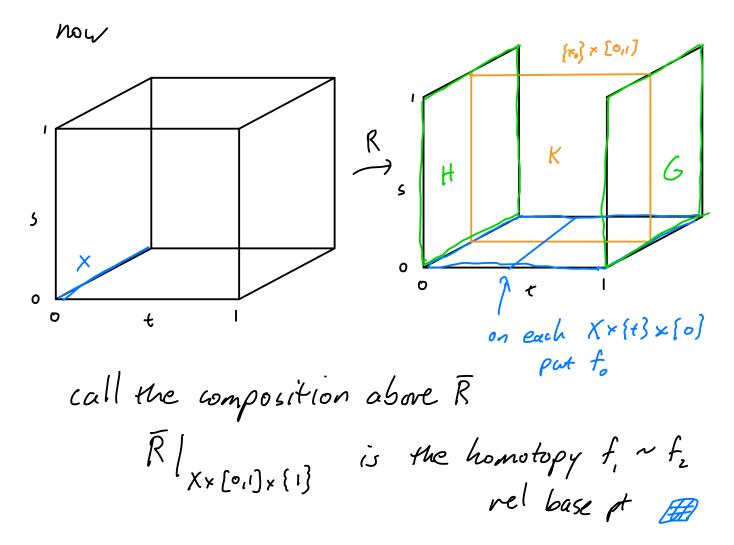
lemma 10:

If (X, x_0) on NDR-pair and $f_0: X \rightarrow Y$ with $f_0(x_0) = y_0$ $V: [o,1] \rightarrow Y$ a path y_0 to y_1 then \exists an $f_1: X \rightarrow Y$ such that $f_1(x_0) = y_1$ and $f_0 = y_1$ f_1

denote f, by J.f. (well-defined once R fixed)

Proof: let R be as defined in the last proof
for
$$(X, x_0)$$
 so R is a retract
R: $X \times [0, 1] \rightarrow (X \times \{0\}) \cup (\{x_0\} \times [0, 1])$
now let $H: X \times [0, 1] \rightarrow Y$ be
 $H(x,t) = \begin{cases} f_0(F_0(x,t)) & \text{if } R(x,t) \in X \times \{0\} \\ Y(R(x,t)) & \text{if } R(x,t) \in \{x_0\} \times [0, 1] \end{cases}$
let $f_1(x) = H(x, 1)$
clearly H is a homotopy along Y between fo and f_1
lemma II:
Suppose $f_0, f_1, f_n : X \rightarrow Y$ are based maps, and (X, x_0) is
an NDR - pair.
If $f_0 \cong_Y f_1$ and $f_0 \cong_Y i f_2$ with $Y \cong Y'$ rel boundary
then $f_1 \cong f_2$ rel base point

 $\frac{ldeo \ of \ Proof}{} (X, x_{0}) \ on \ NDR - pair \ Hen \ you \ can$ $Show \left(X \times [o, i], (X \times [o, i]) \cup (\{x_{0}\} \times [o, i])\right) \ is \ an$ $NDR - pair \ so \ Here \ is \ a \ retraction$ $R : X \times [o, i] \times [o, i] \longrightarrow (X \times [o, i]) \times [o] \cup ((X \times [o, i]) \cup (\{x_{0}\} \times [o, i])) \times [o, i]$



 $\begin{array}{c} \underline{lemma 12}:\\ & Suppose \ f_0: X \rightarrow Y \quad and \ f_i: X \rightarrow Y \quad ore \ homotopic \ along \ X, \\ & f_2: X \rightarrow Y \quad is \ homotopic \ to \ f_i \ along \ X_2 \ and \\ & Y_i(i) = \mathcal{T}_2(o), \ then \ f_0 \sim_{\mathcal{T}_i \times \mathcal{T}_2} f_2 \end{array}$

Proot: just concatenate the homotopies

$$f_{2}$$

$$f_{1}$$

$$f_{1}$$

$$f_{2}$$

$$f_{1}$$

$$f_{2}$$

$$f_{1}$$

$$f_{2}$$

$$f_{3}$$

$$f_{4}$$

$$f_{5}$$

$$f_{5$$

 Th=13:

 If xo is a nondegenerate base point of X then

 π_i (Y, yo) acts on [X, Y]o

 moreover, [X, Y] is the quotient set of [X, Y]o

 by the π_i (X, xo) action if Y is

 path connected

Proof: [r] & T, (Y, Y) and [f] & [X, Y] by lemma 10 we have S.f: X->Y and [r.f] clearly in [X,Y].

Claim: $[Y \cdot f]$ is well-defined. suppose $f,g \in [f]$ so f = g rel base pt by lemma 10 $\exists f_{i}, g_{i}$ such that $f = {}_{g}f_{i}$ and $g = {}_{g}g_{i}$

thus
$$f_{i} \cong_{Y^{-1}} f \cong_{Y} g \cong_{Y} g_{i}$$

rel base point
by lemma 12 $f_{i} \cong_{Y^{-1} \text{ conder}} g_{i}$
and lemma 11 says $f_{i} \cong g_{i}$ rel base boint
so $[\mathcal{X} \cdot f] = [\mathcal{X} \cdot g]$ and $[\mathcal{X} \cdot f]$ does not depend
on $f \in [f]$
and $[\mathcal{X} \cdot f]$ does not depend on $\mathcal{X} \in [\mathcal{X}]$ by lemma 11
let $\overline{\mathbf{F}} : [\mathcal{X}, Y]_{o} \to [\mathcal{X}, Y]$ be the map that forgets base pt.
clearly $\overline{\mathbf{P}}([\mathcal{X}] \cdot [f]) = \overline{\mathbf{P}}([\mathcal{X}])$
so $\overline{\mathbf{F}}$ is invariant under $\overline{\mathbf{T}}_{i}(Y_{iY_{0}})$ action
 $\therefore \overline{\mathbf{E}}$ defines a map $[\mathcal{X}, Y]_{o} \to [\mathcal{X}, Y]$
 $i^{\frac{1}{2}} \overline{\mathbf{P}}([f]) = \overline{\mathbf{P}}([g]),$ then
let H be the free homotopy $f \neq g$
and $\mathcal{X}(t) = H(\mathcal{T}_{o}, t)$
 $f_{i}g$ both take x_{0} to y_{0} so $\mathcal{X} \in \overline{\mathbf{T}}_{i}(Y_{iY_{0}})$
 $and $[\mathcal{X}] \cdot [f] = [g]$
so $\overline{\mathbf{F}}$ is injective on $[\mathcal{X}, Y]_{o}/\overline{\mathbf{T}}(Y_{iY_{0}})$
 $\overline{\mathbf{F}}$ is clearly onto by lemma (0 if
 Y is path connected$

Corollary 14: a based map is null-homotopic it is based null-homotopic

Proof: clearly based null-homotopic
$$\Rightarrow$$
 null-homotopic
now if $f \cong c$ (the constant map, can assume $c(x) = \gamma_0$) by homotopy H
let $\mathcal{X}(t) = H(\chi_0, t)$ and we see $f \cong_{\mathcal{X}} c$
so $c \cong_{\mathcal{X}^{-1}} f$
of course $c \cong_{\mathcal{X}^{-1}} c$
so $f \cong c$ well base point by lemma 11

$$\frac{\text{Gorollary 15}}{\text{if Y is simply connected then}}$$

$$[X,Y]_{o} \rightarrow [X,Y]$$
is a bijection